
AD-A248 193

Ultra-Dependable Real-Time Computing

SFRC. N0001491J304 N173D T IC

YEARLY REPORT C
1 October 1990 - 30 September 1991

Prepared for:

Department of the Navy
Office of Naval Research
800 North Quincy Street

Arlington, Virginia 22217-5000

Prepared By:

Jay K. Strosnider & Ron Bianchini, Principal Investigators
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

(412) 268-8725

App,",.

9(2)4 q 92-06760IHI I l!Hi .12lll II

Principal Investigator Names:
Jay K. Strosnider (412) 268-6927 strosnider@ecc.cmu.edu
Ron Bianchini (412) 268-7105 bianchini@ece.cmu.edu

PI Institution: Carnegie Mellon University
Contract title: Ultra-Dependable Real-Time Computing
Contract Number: N0001491J1304 N173
Reporting Period: 1 Oct 90 - 30 Sep 91

1 Productivity Measures
" Refereed papers submitted but not yet accepted: 5

" Refereed papers accepted and in press: 3

* Refereed papers published: 7

" Books submitted or published: none

" Other reports: 2

" Ph.D. dissertations: 1

" Patents filed or granted: none

" Invited presentations: 10

" Contributed presentations: 7

" Honors, Prizes and Awards received:
" Graduate students supported: 2

" Post-docs supported: 0

" Minorities supported: 0

'n/ e 12 6l7Dis at I &t
Avt11 a~a21 y Co4MB

Statement A per telecon James Smith K
ONR/Code 1267 mDs * I fer l

Arlington, VA 22217-5000

NWW 4 '1/92

Principal Investigator Names:
Jay K. Strosnider (412) 268-6927 strosnider@ece.cmu.edu
Ron Bianchini (412) 268-7105 bianchini@ece.cmu.edu

PI Institution: Carnegie Mellon University
Contract title: Ultra-Dependable Real-Time Computing
Contract Number: N0001491J1304 N173
Reporting Period: 1 Oct 90 - 30 Sep 91

2 Summary of Technical Progress

2.1 Overview
The research effort this year focused in four major areas.

1. Developing schedulable fault recovery strategies that guarantee minimum interference with
fault free tasks, and graceful degradation,

2. Developing analytical techniques that support quantitative analysis of computer
architectures for fault-tolerant computation:

3. Investigating how intelligent integrated agents can enhance distributed systems'
depend !ity.

4. Developing network diagnostic strategies with provable timing properties.

The project members are also concerned with the transition of the theory being developed to the user
community, especially the U.S. Navy. For this reason, project members have a close relationship with the
RTSIA (Real-Time Scheduling in Ada) project in the CMU Software Engineering Institute, and
Distributed Combat Control Project at Naval Ocean Systems Center in San Diego.

During the October 1, 1989 - September 30, 1990 period, substantial progress was made in each of the
two areas listed above. That progress is briefly discussed below.

2.2 Schedulable Fault Recovery
Our research efforts in the past year can be categorized into two broad areas. First, we have continued

to make progress in the development of real-time scheduling theoretic policies for handling the non-
deterministic service requirements of recovery operations. And second, we have stepped up our efforts to
evaluate the potential dependability gains associated with the integration of our proposed time-based
recovery schemes into conventional Fault-Tolerant Real-Time (FT/RT) architectures. A brief summary
of our main contributions to each area follows.

As a result of an extensive literature survey of practical fault recovery mechanisms, we developed a
taxonomy of system-level recovery mechanisms based on time redundancy. Two main time-based
recovery mechanisms are distinguished: those which pre-allocate time for recovery and those in which
time is dynamically allocated. Most FT/RT architectures that support time-based recovery do so by
following some pre-allocation policy, which is usually ad-hoc in nature. In our efforts to develop a
general framework for time-based recovery, we formalized the notion of pre-allocation policies and
provided insight into their implementation tradeoffs. Furthermore, we developed two dynamic allocation
policies for fixed-priority preemptive systems, referred to as the Transient Server and the Dynamic

3

Slack Manager. Each of these policies are based on robust scheduling theoretic principles and have
formally extended the classical notion of guaranteed task-level timing correctness in the absence of
failures to a notion of scheduling stability during recovery. In order to evaluate the relative performance
of pre-allocation versus dynamic allocation schemes, we have developed a discrete event simulator called
DERTsim (DEpendab!c Real-Time simulation model). We have begun conducting a series of simulation
experiments in which recoverability profiles (i.e., a measure of the ability of the scheduler to
accommodate recovery operations without disrupting the timing correctness of the RT application tasks)
are generated for a wide range of RT workloads. Our objective is to characterize the expected
performance of these different time-based recovery schemes under a variety of loading conditions.

In order to evaluate the potential dependability gains attainable through time-based recovery, we have
conducted research into the state-of-art validation tools developed within the Fault-Tolerance community.
We have been successful in identifying tools to support three suitable validation methods, namely
analytical modeling tools (e.g., HARP, SHARPE), system-level simulation tools (e.g., DEPEND), and
fault-injection testbeds (e.g., FAUST, FIAT). We are currently conducting feasibility studies to identify
which tool is the most suitable to fulfill our evaluation needs.

2.3 Analysis of Architectures for Fault-Tolerant Computation
This effort developed computational models to examine the relative viability of traditional von

Neumann, Very Long Instruction Word (VLIW), and dataflow architectures for fault-tolerant applications
requiring modular redundancy. Analytic machine execution cycle equations are developed for each class
of machine with respect to varying amounts of voting overhead and granularity. Attributes that are varied
for each architecture include shared memory access, program decomposition, uni-tasking and multi-
programmed scheduling of the application's algorithm. The models and methodology developed in this
research provide a framework for quantitative analysis of very different architectures when executing
fault-tolerant voting applications. This work is largely complete with no addition planned effort in the
coming year.

2.4 Using Intelligent Integrated Agents to Enhance Distributed System Dependability
This effort has just been kicked off this year and leverages heavily off of the CROPS5 integrated,

real-time production system developed earlier. The effort is largely a system engineering effort focusing
combining technologies to maximize large system dependability.

2.5 Time-Constrained Diagnostics
A critical issue for distributed real-time applications, including embedded systems, is fault tolerance.

This research effort proposes the first application of the large body of theoretical results in distributed
system level diagnosis to real-time distributed systems. A distributed self-diagnusis algorithm,
EVENT-SELF, has been developed and utilized in the Distributed Self-Diagnosis (DSD) system that
combines the rigor associated with previous theoretical results and the resource limitations associated
with actual systems. Resource limitations identified in real systems include available message capacity
for the communication network and limited processor execution speed. The EVENTSELF algorithm
differs from previously published algorithms by adopting an event-driven approach to self-diagnosis.
Algorithm messages are reduced to those messages that are required to indicate changes in system state.
Preliminary results have proven the resource overhead required by the EVENT-SELF algorithm to be
within reasonable bounds, permitting expansion to large wide area networks.

4

The resource limitations and predictability requirements of real-time systems place greater restrictions
on algorithm execution. Ideally, a real-time disuibuted self-diagnosis system must impose predictable
and minimum utilization of processor and network resources. Predictable processor computation time is
required for execution of the distributed diagnosis algorithm and for processor testing. The primary focus
of this werk is to evaluate the distributed diagnosis techniques within the bounds of real-time systems
constraints. Additional theoretical work will address the fault coverage of the system. This includes the
ability to handle intermittent or hybrid fault conditions as shown in and the examination of improved
processor testing schemes to identify a higher percentage of processor faults.

Results of this research project for the first year focus on the specification and implementation of a
real-time version of the DSD algorithm, called RT-DSD. The RT-DSD task set has been defined and
validated to perform the diagnosis task. A preliminary version of the algorithm, that does not include the
event-driven enhancement, has been implemented. Current research emphasis is placed on the
implementation of the final version that will include the event-driven enhancement. Once implemented,
the task set will be analyzed and evaluated under experimentation.

2.5.1 Scheduling
To implement a real-time version of DSD, a fixed priority scheduling algorithm is chosen. Fixed

priority scheduling is chosen since it is easy to implement with most operating systems and the analysis
procedure for several fixed priority schemes is well documented. The scheduling method employed for
the RT-DSD algorithm is deadline monotonic scheduling, i.e. tasks with shorter deadlines have higher
priority.

2.5.2 Platform
The Ada language was chosen for implementation of the RT-DSD algorithm. The Verdix Ada

Development System (VADS) is currently utilized with a cross compiler for the Motorola 68020. Ada
was selected mainly due to its tasking support and its built in fixed priority scheduling. Ada rendezvous
are augmented with semaphores provided by the VADS system. The VADS system provides additional
support for real-time dynamic memory management.

The testbed chosen to implement the algorithm was four Motorola 68020 nodes, connected through a
Real-Time Communication Network (RTCN). To simulate a larger network, each node is programme' to
simulate multiple independent nodes. The interconnection network is an experimental fiber-optic LAN
designed by IBM. RTCN was created specifically to prevent priority inversion in LAN commurications.
By meeting this requirement, RTCN can be used to implement real-time scheduling algoritl, i:,, such as
rate-monotonic scheduling, for communication tasks. Additionally, RTCN provide., high level
functionality, such as connection and connectionless service, atomic send-with-acknowledge, and DMA
capability to off-load communication processing.

2.5.3 Prototype and Final Implementation
A prototype version of RT-DSD was implemented for preliminary evalniiion of the platform. The

prototype implements the NEWSELF algorithm as a real-time task set. No consideration is given for
event-driven messages. The prototype was completed in June, 1991 and was successful in detecting both
node failures and recoveries. An implementation of the EVENTSELF algorithm for real-time is in
progress. The event driven RT-DSD algorithm consists of eight Ada tasks, with separate deadlines and
priorities.

5

2.5.4 Analysis Approach
The goal of the analysis is to determine a real-time task set for RT-DSD, where each task is defined by

its execution time, deadline, and period. Each network node or CPU will perform the RT-DSD task set,
and a communication task set that is supported by RTCN. The entire task set will be analyzed to
determine the total resources to be reserved for RT-DSD to operate with hard diagnosis deadlines.
Resource requirements are expected to be functions of network size, diagnosis latency, resource failure
rate and the tests performed. The resulting task set will be scheduled by the deadline monotonic real-time
scheduling algorithm.

The original DSD algorithm is poorly behaved for real-time systems in terms of predictable task
execution time and rate of task arrival, both of which vary with the node failure rate. To specify the
resource requirements of the program, the node failure rate is limited to the number of fault events
diagnosable per unit time. Any number of fault events can occur, but only up to the limit can be
diagnosed in the time unit. The RT-DSD algorithm is further complicated by its nature as a distributed
task. The presence of real-time communications, as found in RTCN, is crucial in determining the timing
of the overall system diagnosis. Task dependencies, specifically when a task invokes another task, are
presently being analyzed to determine the number and type of tasks that will be initiated under a variety
of fault conditions. Since the task set generated by RT-DSD is flexible, the worst cast task set will used
in subsequent analysis. The worst case task set occurs when the largest allowed number of node failures
take place within a single test period.

Dependency analysis can also be used to determine task sequencing, both within and across node
boundaries. Once task sequencing is known, the diagnosis latency of the algorithm can be stated as a
function of task deadlines. Task execution times will then be measured, under the desired fault
conditions. Execution times for software will be fixed for the given experimental platform, but the
methodology will be applicable to any particular implementation. A hard deadline is assigned to each
task of the task set. The resultant task set is analyzed to ensure real-time schedulability. Task deadlines
are used to accurately determine the hard-deadline diagnosis latency of the system. The analysis is
iterated for various fault cases and deadline assignments, allowing the diagnosis capability of RT-DSD to
be tailored to specific applications.

After analysis, the resources that must be reserved for RT-DSD to guarantee hard-deadline diagnosis
will be characterized. This task set can be incorporated into a real-time system by combining all the tasks
of RT-DSD with those from a desired application, assigning priorities appropriately, and analyzing the
overall task set for schedulability.

2.5.5 Further Considerations: Overload and Degradation
The actual execution time of the RT-DSD algorithm tasks can vary significantly with the number of

faults in the system. The CPU and communication resources are reserved only for a subset of faults,
specifically for fault sets that occur within the specified failure rate. The RT-DSD algorithm requires
more processing time and network bandwidth than specified if the failure rate exceeds its limit, causing
other tasks to miss deadlines. To prevent this case, the RT-DSD algorithm should be implemented with a
sporadic server, allowing it to execute normally when the failure rate is within design limits, but limiting
its execution time during overload transients. Under overload, the RT-DSD algorithm will not meet
deadlines, but other tasks in the system will not be affected. Furthermore, the diagnosis latency of the
RT-DSD algorithm will degrade, but will converge to correct diagnosis.

6

Principal Investigator Names:
Jay K. Strosnider (412) 268-6927 strosnider@ece.cmu.edu
Ron Bianchini (412) 268-7105 bianchini@ece.cmu.cdu

PI Institution: Carnegie Mellon University
Contract title: Ultra-Dependable Real-Time Computing
Contract Number: N0001491J 1304 N 173
Reporting Period: 1 Oct 90 - 30 Sep 91

3 Publications and Presentations
The following are project publications which were written, appeared or are in press for the above

period. Project members made many research presentations during the contract period, and these are not
enumerated. Each of the articles listed below that was published in a conference proceedings volume was
presented at that conference.

3.1 Published or In Press
" R.P. Bianchini Jr., and R. Buskens. Implementation of On-line Distributed System-Level

Diagnosis Theory, IEEE Transactions on Computers, Special Issue Fault-Tolerant
Computing, May 1992.

* S. Thuel and J.K. Strosnider, The Transient Server Approach to Scheduling Time-Critical
Recovery Operations. Proceedings of the 12th IEEE Real-Time Systems Symposium,
December 1991.

" C.J. Paul, A. Acharya, B. Black and J.K. Strosnider. Reducing Problem-Solving Variance to
Improve Predictability, Communications of the ACM, August 1991, pages 80-93.

" L.E. Holloway, C.J. Paul, J.K. Strosnider, and B.H. Krogh, Integration of Behavioral Fault-
Detection Models and an Intelligent Reactive Scheduler. Proceedings of Intelligent Controls
Conference, Washington, D.C., August 1991.

" R.P. Bianchini Jr., and R. Buskens. An Adaptive Distributed System-Level Diagnosis
Algorithm and Its Implementation, The twenty-first Annual International Symposium on
Fault-Tolerant Computing, June, 1991.

" C.J. Paul, A. Acharya, B.Black and J.K. Strosnider, Adding Problem Solving Capabilities to
Existing Real-Time Systems, Proceedings of the Eighth IEEE Workshop on Real-Time
Operating Systems and Software, May 1991.

" R. Mraz, G. Palmer and J.K. Strosnider, Analysis of Architectures for Fault-Tolerant
Computation, 24th Hawaii International Conference on System Sciences, Award Paper,
January 1991.

* D.B. Kirk and J.K. Strosnider, SMART Cache Design Using the R3000, Proceedings of the
1 I th IEEE Real-Time Systems Symposium, December 1990.

3.2 Submitted for Publication
" R. Mraz, G. Palmer, J.K. Strosnider, Analysis of Architectures for Fault-Tolerant

Computation, IEEE Transactions on Reliability, Submitted February 1991.

" J.E. Sasinowski and J.K. Strosnider, A Dynamic Programming Algorithm for Cache/Memory
Partitioning for Real-Time Systems, IEEE Transactions on Computers, Submitted October,
1991.

7

S. Sathaye, A. Lin, R.B. Bianchini and J.K. Strosnider, Routing Periodic Real-Time Traffic
in a Packet Switched Network, 12th International Conference on Distributed Systems,
Yokohama, Japan, June 9-12, 1992 (submitted 10-91)

3.3 Ph.D. Dissertations
* Kirk, David, "Predictable Cache Design for Real-Time Systems," Department of Electrical

and Computer Engineering, Carnegie Mellon University,) December, 1990.

Principal Investigator Names:
Jay K. Strosnider (412) 268-6927 strosnidcr@ece.cmu.edu
Ron Bianchini (412) 268-7105 bianchini@ece.cmu.edu

PI Institution: Carnegie Mellon University
Contract title: Ultra-Dependable Real-Time Computing
Contract Number: N0001491J1304 N173
Reporting Period: 1 Oct 90 - 30 Sep 91

4 Transitions and DoD Interactions
Jay Strosnider interacts frequently with NOSC San Diego Distributed Combat Control project

transitioning technology into Navy lab testbeds in San Diego. He also interacts with IBM, Bellcore and
Intel on commercial applications of the developed technologies.

Ron Bianchini has interacted with the Naval Research Lab in Washington, D.C. concerning the
internetworking of laboratory computing facilities. His commercial interactions include IBM Austin,
AT&T Bell Labs and Bell Northern Research.

9

Principal Investigator Names:
Jay K. Strosnider (412) 268-6927 strosnider@ece.cmu.edu
Ron Bianchini (412) 268-7105 bianchini@ece.cmu.edu

PI Institution: Carnegie Mellon University
Contract title: Ultra-Dependable Real-Time Computing
Contract Number: N0001491J 1304 N 173
Reporting Period: 1 Oct 90 - 30 Sep 91

5 Software and Hardware Prototypes
The following prototype was developed partially under the sponsorship of the Office of Naval

Research.

5.1 FAA Collision Avoidance Prototype
An initial distributed FAA collision avoidance Prototype was developed this year which simulates

aircraft and in which some of the planes can contain integrated real-time artificial intelligence capabilities
that control their behaviors. The first part of this project integrated the CROPS5 real-time production
system, a lightweight process package, a remote procedure call package, the X window system, and the
Unix timer facility. These components were integrated to create a coincidently real-time, distributed
collision avoidance demonstration system running under Ultrix. Under this system, there is a single
server process which maintains the information about the objects in the simulation. There are some client
processes which generate "unintelligent" planes, which are planes on random, straight trajectories. The
simulation may also contain "player" processes, in which a human being controls a plane from his
workstation and can watch the progress of the other planes. The other clients are the "intelligent" planes
which are under the control of a production system written in CROPS5. The production system currently
detects when planes enter the "red zone" around its plane and attempts to change the course of the plane
to avoid hitting any other planes. We plan to extend this distributed prototype to investigate and validate
the dependability gains possible using integrated Al techniques.

Table of Contents
I Productivity Measures 1
2 Summary of Technical Progress 2

2.1 Overview 2
2.2 Schedulable Fault Recovery 2
2.3 Analysis of Architectures for Fault-Tolerant Computation 3
2.4 Using Intelligent Integrated Agents to Enhance Distributed System Dependability 3
2.5 Time-Constrained Diagnostics 3

2.5.1 Scheduling 4
2.5.2 Platform 4
2.5.3 Prototype and Final Implementation 4
2.5.4 Analysis Approach 5
2.5.5 Further Considerations: Overload and Degradation 5

3 Publications and Presentations 6
3.1 Published or In Press 6
3.2 Submitted for Publication 6
3.3 Ph.D. Dissertations 7

4 Transitions and DoD Interactions 8
5 Software and Hardware Prototypes 9

5.1 FAA Collision Avoidance Prototype 9

SSS SS

-. 1) pitt - -

pt Lit L

ii~ ~ sut eo r

* .** (ltiitiit v v eeceee

itv v e
v- V C e i

Sa~~ ~~ i:M-Nv 1iSD:? :29 199:

